

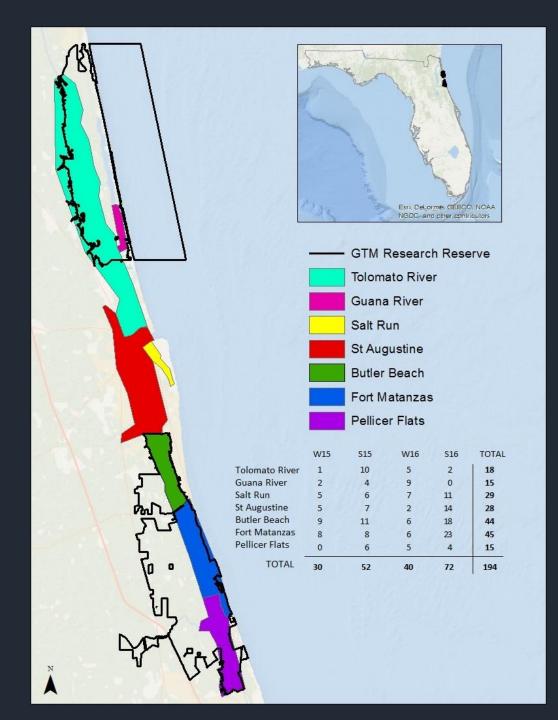
Oyster Monitoring (2014-2016)

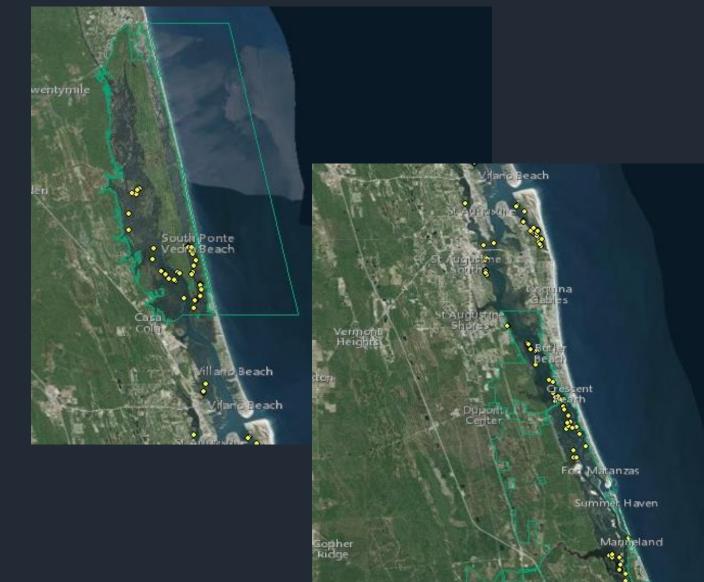
Nikki Dix, Pam Marcum, Matt Monroe

Oyster Monitoring Objectives

- 1) Evaluate the status of GTM oysters
- 2) Estimate ecosystem services

Guiding Questions


NE FL Oyster Research Meeting May 2014



Guiding Questions

- How many oysters (areal coverage * density) are in the GTM/St. Augustine region?
- How do oyster abundances and size class frequencies change over space and time?
- What are the relative influences of temperature, food availability, salinity, disease, predation, and harvesting on spatial and temporal patterns in oyster abundance and size?
- How do estimates of oyster abundance and size compare to past estimates and to oysters in other systems regionally and globally?
- Where are restoration efforts most needed and most likely to succeed?

A Regional Approach to Guide Future **Monitoring** Water quality Hydrodynamics Harvesting Management

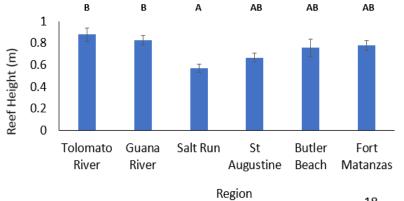
Source: Earl, Digital@loke, SeoSye, Leuked, U avisatopo, and the SIS User Community, Earl, contributors, and the SIS User community

2015 – 2016 Summer (~July-Aug) Winter (~Dec-Feb)

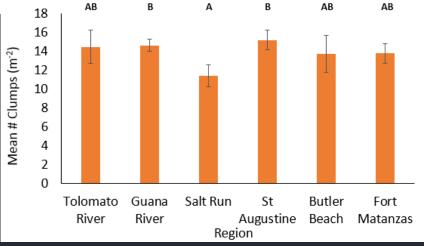
reef height reef slope # clusters # crown conchs % live, dead, mud # oysters oyster shell height # barnacles # mussels mussel shell height # clams

Reef Condition

reef height reef slope # clusters # crown conchs % live, dead, mud # oysters oyster shell height # barnacles # mussels mussel shell height # clams


reef height reef slope # clusters # crown conchs % live, dead, mud # oysters oyster shell height # barnacles # mussels mussel shell height # clams

Faunal Associates



Reef Condition

Regional differences in reef height and clumps

			Mean #		0/ /2\	
			(m ⁻²)	% (m ⁻²)		
	Reef		, ,			
	Height			Live	Dead	Mud
Season	(m)	Reef Slope*	Clumps*	Cover	Cover*	Cover*
Summer	0.73	0.18	13.40	26.82	41.28	30.93
Winter	0.75	0.17	14.11	29.03	49.91	17.46
p-value	0.677	0.8411	0.62	0.1461	0.0116	6.88E-05
Region						
Tolomato River	0.88	0.21	14.47	26.24	54.00	13.86
Guana River	0.83	0.18	14.62	30.51	43.69	24.45
Salt Run	0.57	0.18	11.40	26.20	43.96	28.71
St Augustine	0.66	0.19	15.18	26.18	34.44	37.25
Butler Beach	0.76	0.13	13.69	27.62	47.89	24.00
Fort Matanzas	0.78	0.16	13.76	28.58	48.44	22.61
p-value	4.75E-05	0.398	0.0262	0.3593	0.0817	0.0688

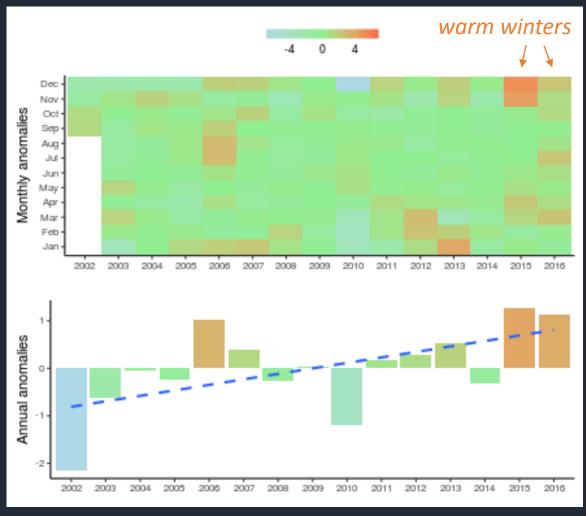
Reef Condition

- Regional differences in reef height and clumps
- Seasonal differences in % cover

			Mean # (m ⁻²)		% (m ⁻²)	
	Reef		(111)			
	Height			Live	Dead	Mud
Season	(m)	Reef Slope*	Clumps*	Cover	Cover*	Cover*
Summer	0.73	0.18	13.40	26.82	41.28	30.93
Winter	0.75	0.17	14.11	29.03	49.91	17.46
p-value	0.677	0.8411	0.62	0.1461	0.0116	6.88E-05
Region						
Tolomato River	0.88	0.21	14.47	26.24	54.00	13.86
Guana River	0.83	0.18	14.62	30.51	43.69	24.45
Salt Run	0.57	0.18	11.40	26.20	43.96	28.71
St Augustine	0.66	0.19	15.18	26.18	34.44	37.25
Butler Beach	0.76	0.13	13.69	27.62	47.89	24.00
Fort Matanzas	0.78	0.16	13.76	28.58	48.44	22.61
p-value	4.75E-05	0.398	0.0262	0.3593	0.0817	0.0688

Reef Condition

- Regional differences in reef height and clumps
- Seasonal differences in % cover
- Oyster density moderately correlated with clumps and % live cover
- Strong inverse correlation b/w % dead and % mud

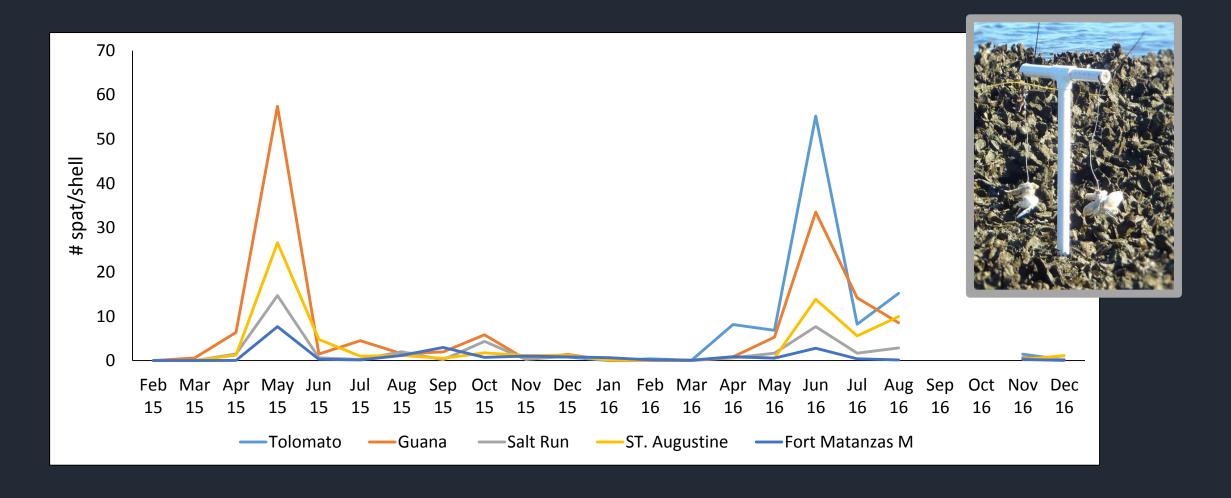

Spearman Correlations												9
non-transformed data												
					% Fishery	% Spat Size				% Cover	% Cover	% Cover
	# Barnacles	# Mussels	# Clams	# Oysters	Size Oyster	Oyster	Reef Height	Reef Slope	# Clumps	Live	Dead	Mud
Reef Height	0.13	0.19	0.14	0.17	-0.08	0.09	1.00					
Reef Slope	0.06	0.11	-0.09	0.06	0.12	-0.01	0.49	1.00				
# Clumps	0.07	0.49	0.31	0.55	0.14	0.10	0.20	0.12	1.00			
% Cover Live	0.23	0.39	0.31	0.51	0.15	-0.04	0.13	0.06	0.58	1.00		
% Cover Dead	-0.09	-0.01	0.21	0.11	-0.47	0.34	0.04	-0.22	-0.15	0.07	1.00	
% Cover Mud	-0.04	-0.18	-0.32	-0.31	0.32	-0.25	-0.12	0.16	-0.13	-0.48	-0.88	1.00
weak correlation [0.21	- 0.4]	moderate cor	relation [0.4:	1 - 0.70]	strong correl	ation [0.71 - 1	.0]					

- No significant seasonal or regional differences in oyster density were found from randomly sampled reefs
- Oyster density showed seasonal patterns on repeated reefs in Year 1

	Mean # (0.0625m ⁻²)		% (0.0625m ⁻²)		
		Repeated			
	One-Way	Measures	Fishery		
Season	ANOVA*	MANOVA*	Sized*	Spat Sized*	
Summer	103.76	63.27	0.07	0.42	
Winter	96.83	88.10	0.07	0.29	
p-value	0.5733	0.001905	0.3516134	3.52E-06	
Region					
Tolomato River	94.71		0.05	0.37	
Guana River	106.95		0.11	0.35	
Salt Run	86.91		0.07	0.38	
St Augustine	115.86		0.06	0.39	
Butler Beach	109.31		0.03	0.40	
Fort Matanzas	96.96		0.05	0.33	
p-value	0.2397		0.0004658	0.0825	
* 1 5			1.1.4		

^{*}analyses performed on square root transformed data, all means were calculated from non-transformed data

- No significant seasonal or regional differences in oyster density were found from randomly sampled reefs
- Oyster density showed seasonal patterns on repeated reefs in Year 1



http://swmprats.net (FM station)

- No significant seasonal or regional differences in oyster density were found from randomly sampled reefs
- Oyster density showed seasonal patterns on repeated reefs in Year 1
- Regional differences in proportion of fishery sized oysters
- Seasonal differences in proportion of spat sized oysters

	Mean # (0	0.0625m ⁻²)	% (0.0625m ⁻²)		
		Repeated			
	One-Way	Measures	Fishery		
Season	ANOVA*	MANOVA*	Sized*	Spat Sized*	
Summer	103.76	63.27	0.07	0.42	
Winter	96.83	88.10	0.07	0.29	
p-value	0.5733	0.001905	0.3516134	3.52E-06	
Region					
Tolomato River	94.71		0.05	0.37	
Guana River	106.95		0.11	0.35	
Salt Run	86.91		0.07	0.38	
St Augustine	115.86		0.06	0.39	
Butler Beach	109.31		0.03	0.40	
Fort Matanzas	96.96		0.05	0.33	
p-value	0.2397		0.0004658	0.0825	
*			1.1.4		

^{*}analyses performed on square root transformed data, all means were calculated from non-transformed data

Faunal Associates

- Seasonal differences for barnacle densities
- Regional differences for mussels and barnacles

	Mean # (0.0625m ⁻²)				
Season	Barnacles*	Mussels*	Clams*		
Summer	11.43	15.57	2.40		
Winter	19.45	9.95	2.75		
p-value	0.0122	0.0855	0.35571		
Region					
Tolomato River	13.35	5.94	2.13		
Guana River	12.73	15.35	2.84		
Salt Run	26.23	9.26	1.96		
St Augustine	7.73	19.82	3.00		
Butler Beach	11.46	5.69	2.25		
Fort Matanzas	11.58	18.13	2.75		
p-value	0.0425	4.03E-05	0.54542		

Faunal Associates

- Regional differences for mussels and barnacles
- Seasonal differences for barnacle densities
- Clam and mussel densities were strongly correlated with oyster density
- Predatory crown conchs were not found on any reefs north of Pellicer Flats

Spearman Correlations	5		
non-transformed data			
	# Barnacles	# Mussels	# Clams
# Barnacles	1.00		
# Mussels	-0.04	1.00	
# Clams	-0.02	0.58	1.00
# Oysters	0.10	0.71	0.73
% Fishery Size Oyster	0.04	-0.03	-0.28
% Spat Size Oyster	-0.02	0.25	0.63
Reef Height	0.13	0.19	0.14
Reef Slope	0.06	0.11	-0.09
# Clumps	0.07	0.49	0.31
% Cover Live	0.23	0.39	0.31
% Cover Dead	-0.09	-0.01	0.21
% Cover Mud	-0.04	-0.18	-0.32
weak correlation [0.21			
moderate correlation [
strong correlation [0.7]			

General Conclusions

- Non-destructive cover metrics may be suitable indicators of relative oyster abundance and reef condition
- Oyster density may be an appropriate indicator of habitat function
- Lack of regional and seasonal differences in oyster density suggest that for large-scale population structure estimates, annual sampling evenly

distributed throughout the reserve might be appropriate and would save resources for more targeted, hypothesis-driven studies

Next Steps and More Questions...

- What monitoring frequency is appropriate for which questions?
- Is summer/winter appropriate?
- What spatial coverage is appropriate for which questions?
 - # quadrats needed to characterize a reef and # reefs to characterize a region
- Which non-destructive metrics can be used widely and what questions will they answer?
- Which metrics are good indicators of ecosystem services?

Nikki Dix Research Director Nikki.Dix@dep.state.fl.us Pam Marcum
Biologist
Pamela.Marcum@dep.state.fl.us

Matt Monroe
Biologist
Mathew.Monroe@dep.state.fl.us