Red Mangroves positively influence the Eastern Oyster along an intertidal gradient

Dinorah H. Chacin, Susan S. Bell, and Christopher D. Stallings

Oyster Integrated Mapping and Monitoring Program
October 9th, 2019

Is a sessile bivalve mollusk

- Is a sessile bivalve mollusk
- Has a wide distribution

- Is a sessile bivalve mollusk
- Has a wide distribution
- Performs a variety of ecosystem services

water filtration

sediment stabilization

- Is a sessile bivalve mollusk
- Has a wide distribution
- Performs a variety of ecosystem services
 - Is an ecosystem engineer

Biotic and abiotic factors vary along the intertidal

Oysters can grow on mangrove prop roots

Tampa Bay study questions

- Do oysters demographic rates along different tidal elevations differ between reefs and Red Mangroves?
- Which **biotic** and **abiotic** factors differ along the intertidal zone?
- Are oysters on **high** intertidal zones on prop roots **positively** influenced by Red Mangroves?

Methodology

Methodology

- Oyster reefs and Red Mangrove prop roots were sampled:
 - to quantify abundance of oysters, predators, gapers per ~0.25m²
 - to quantify recruitment and survival using ceramic tiles
 - at 3 tidal elevations (bottom, mid, top)

Methodology

- Oyster reefs and Red Mangrove prop roots were sampled:
 - to quantify abundance of oysters, predators, gapers per ~0.25m²
 - to quantify recruitment and survival using ceramic tiles
 - at 3 tidal elevations (bottom, mid, top)
- Evaporative water loss experiment on top zones of both habitats

Evaporative water loss experiment

Oyster density was higher on Red Mangroves than on reefs

 $F_{1.35}$ = 15.23, p = 0.01

Oyster density was higher on Red Mangroves than on reefs

Oyster density was higher on Red Mangroves than on reefs

Density of oysters was lower at lower intertidal zones of reefs

$$F_{2,24} = 6.21$$
, $p = 0.001$

The percent of gapers seemed higher and more variable at the bottom zone

 $F_{2,24} = 15.23, p = 0.091$

The percent of gapers seemed higher and more variable at the bottom zone

 $F_{2.24} = 15.23, p = 0.091$

Oyster density was lower at the lower and higher intertidal zones the prop roots

Percent of gapers was lower at the higher intertidal on prop roots

Survival rates were generally similar, but were higher at the higher intertidal on pop roots

Survival rates were generally similar, but were higher at the higher intertidal on pop roots

Tampa Bay study - summary

- There are oyster demographic patterns of zonation along the intertidal zone.
- These patterns can be influenced by the presence of Red Mangroves.
- Mangroves positively influenced oysters.
 - Predation refuge
 - Desiccation stress refuge

Implications and future directions

 Red Mangroves could serve as a potential refuge for oysters in the face of climate change.

Implications and future directions

- Red Mangroves could serve as a potential refuge for oysters in the face of climate change.
- Further studies are in need to separate structural complexity versus canopy effect.
 - Structural threshold
 - Canopy size

Implications and future directions

- Red Mangroves could serve as a potential refuge for oysters in the face of climate change.
- Further studies are in need to separate structural complexity versus canopy effect.
 - Structural threshold
 - Canopy size
- Results could be used in living shoreline projects.

Immensely thankful!

- Committee members
- Fish Ecology Lab members
- Numerous field assistants

