OYSTER MONITORING IN TAMPA BAY

Nicole Maloney, Florida Fish and Wildlife Research Institute
OIMMP, May 2022

Comprehensive Everglades Restoration Plan (CERP)

- 2005-2007
- Used as an outlier site to compare to long term CERP trends in Loxahatchee River, St. Lucie Estuary, Lake Worth Lagoon, and Biscayne Bay
 - Sebastian River, Mosquito Lagoon, Tampa Bay
- 3 stations
 - Pinellas Point, Skyway, Fort DeSoto

State monitoring

- 2016-present
- Added 2 more stations:
 - Gulfport
 - Weedon Island
- 5 total monitoring stations

Dermo disease and reproduction

- Live oysters collected monthly
 - Gonadal development
 - Prevalence and intensity of oyster disease *Perkinsus marinus* (dermo)

Dermo disease

- Parasite density (infection intensity) was ranked according to the Mackin scale (Mackin 1962).
- Mean infection intensity and the percentage of infected oysters for each station
- Oysters in TB typically have moderate to moderately high rates of dermo prevalence

Stage	Category	Number of cells
0	Uninfected	None detected
0.5	Very light	<10
1	Light	11–100 cells
2	Light to	Local concentrations of
	moderate	24–50 cells
3	Moderate	3 cells in all fields at
		100×
4	Moderate	High numbers in all
	heavy	tissues
5	Heavy	Enormous numbers

Reproductive development

- Remaining tissue of each oyster preserved for histological determination of reproductive development stage
- Classification scheme modified from Fisher et al (1996)

Value	Stage	Observations
1	Developing	Gametogenesis has begun
		immature gametes located on follicle walls
		mature gametes may be present
2	Ripe/Spawning	Follicles distended and full of ripe gametes
		ova compact/sperm with visible tails
		no immature gametes on follicle walls
		active spawning, but less than 2/3 depleted
3	Spent/Recycling	Most gametes evacuated from the follicles
		more than 2/3 depleted
4	Indifferent	Gonads devoid of gametes, cytolysis ongoing

Reproductive development

- Monthly means of reproductive development stages
- Warmer water temps coincide with spawning
 - Cooler months with dormant and recovering stage
- Higher prevalence of parasites (*Bucephalus* polymorphus, trematodes, nematodes, etc.) when compared to CERP sites
- Parasitic prevalence calculated as the percentage of oysters infected, regardless of infection level.

Condition index

- Additional live oysters collected monthly for condition index (CI) and shell pest analysis
- CI can be used as an indicator of oyster health
- By comparing the dry meat weight of the animal to the interior volume of the shell
 - When there is more tissue occupying the space inside the shell there will be a higher indices value.

Shell Pests

- January 2016 March 2022
- Use samples from condition index
- Started as a qualitative and quantitative analysis
- 2018 developed an SOP to analyze shell pest damage using image analysis software Image Pro Premier

Shell Pests

- Using shells as guide, pest damage is measured in program
- 2 out of 5 stations typically have higher pest percent damage than the other three stations
 - Weedon island and Fort DeSoto
- Higher salinities and temperatures are favorable for most pests

Recruitment

- 3 replicate spat monitoring arrays deployed and retrieved monthly at all stations
- Retrieved shells taken back to lab, where each shell is examined for oyster spat and counted when seen

Recruitment

- Data from top of first shell and bottom of last shell not analyzed to account for predation, wave action, sedimentation, algae cover, etc.
- Weedon typically has higher spat count each month when compared to other stations in TB
 - Closer to freshwater input which can keep salinities closer to optimal rather than the other 4 consistently saline stations

Density and Shell Height

- Surveyed biannually
 - March and September
- 15 replicate 1/4-m² quadrats are haphazardly deployed
- Volumetric and weight measurements
 - Each quadrat is placed in a tared bucket and weighed
 - Volume of each quadrat
- Shell Height
 - Maximum of 50 live oyster shell heights (umbo to vertical shell margin) measured per quadrat

Density and Shell Height

- All live and dead oysters (articulated shells) counted
- Total live and dead per station, and proportion of dead oysters to total number of live and dead oysters
- Mean SH per station each survey

Density and Shell Height

- Fort DeSoto die off
 - Has not really come back
 - Little substrate, high salinities, lots of pests and predators, on top of all this – macroalgae exacerbated by most recent red tide
- Weedon has had several die offs but can usually recover well enough

Water quality

- Salinity, temperature, pH, DO, Secchi, and turbidity
- Salinities are not as variable as some of the EC CERP sites can be
- DO, Secchi, and turbidity can be variable during the summer months

Future projects for TB

- Analyze dataset!
- TIG (Trustee Implementation Group)

TIG

Six study sites in Florida:

- Pensacola Bay and St. Andrew Bay in the Panhandle region
- Suwannee Sound and the Withlacoochee/ Crystal River area in the North Peninsular region
- Tampa Bay and Charlotte Harbor in the South Peninsular region*

TIG

- Task 1 data compilation
- Task 2 benthic mapping
 - Qualitative surveys by poling or probing from a boat to determine general benthic compositions.
- Task 3 field assessment and monitoring
 - Stratified random survey of oysters conducted to determine oyster density and size distribution
 - Monitoring chosen stations within sites
- Task 4 HSI model
 - Once the model is created, data collected during mapping efforts and oyster density surveys will be used to verify the validity of the model.

HSI model

- GIS-based habitat suitability index (HSI)
- Conducting habitat suitability analyses to identify optimal oyster restoration locations along the Florida Gulf coast using existing water quality and oyster data from cooperating agencies
- HSI score ranging from o (unsuitable) to 1 (optimal)

TB location suitability

Habitat suitability = seagrass SIV *
 channel SIV * depth SIV * salinity SIV

THANKYOU!

QUESTIONS?