
# Plant-Pollinator Networks in Fire-Maintained Sandhills

Research Study (2019-2020)







#### **Project Team**

Principal Investigator: Dr. Johanna Freeman Fish and Wildlife Research Institute/FWC

Co-Principal Investigator: Dr. Ben Baiser Wildlife Ecology & Conservation/UF

Remote Sensing: Drs. Eben Broadbent & Angelica Almeyda Forest Resources & Conservation/UF

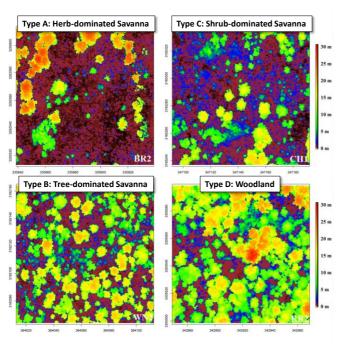
Insect Identification: Dr. Josh Campbell *USDA/Agricultural Research Service* 

Project Implementation:
Cherice Smithers and Pablo Moreno-Garcia
Graduate students, University of Florida
Scott Gilb, Bailey Piper, and Elizabeth White
Research technicians, FWRI/FWC



#### Introduction

In Florida's fire-dependent longleaf pine savannas, as in terrestrial ecosystems worldwide, the mutualistic interaction networks formed by flowering plants and pollinators are of fundamental importance for the maintenance of biodiversity (Bascompte and Jordano 2007). Florida is part of the North American Coastal Plain floristic province, which is considered a global biodiversity hotspot due to unusually high vascular plant diversity and endemism (Noss et al. 2015). The pollinating insects of longleaf pine savannas likely play a central role in maintaining this high overall biodiversity, and they are also a diverse group in their own right, representing several prominent insect orders: Lepidoptera (butterflies and moths), Hymenoptera (bees and wasps), Coleoptera (beetles), and Diptera (flies) (Spiesman & Inouye 2013). Despite their ecological importance, the plant-pollinator networks of longleaf pine savannas have received little study (Spiesman & Inouye 2013). The purpose of this project is to begin filling critical baseline data gaps regarding plant-pollinator networks in Florida's fire-maintained uplands and their relationships to vegetation management.

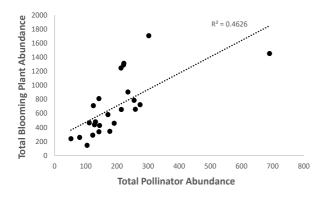

## **Methods**

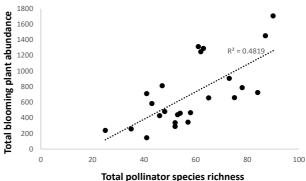
24 1-hectare (2.5-acre) study plots were located at nine different fire-managed sandhill preserves in North-Central Florida: Ft. White WEA, Bell Ridge WEA, River Rise Preserve State Park, Jennings State Forest, Black Creek Ravines Conservation Area, Ordway-Swisher Biological Preserve, two separate tracts of Withlacoochee State Forest, and Chassahowitzka WEA. The study sites were carefully selected according to several criteria, including: 1) Frequent and ongoing prescribed fire, in most cases upwards of 20 years; 2) No history of intensive agriculture or plantation forestry; 3) Old growth species in the understory indicative of low soil disturbance (i.e. wiregrass, various wildflowers); and 4) Approximately one year since the last prescribed fire.

Within each preserve, two to three 1ha sampling plots were established at least 1km apart. Plant species composition was assessed in a grid of 25 5m x 5m quads. Species-specific flower abundance counts were conducted monthly from March 2019 – October 2019 along two transects (E-W and N-S) and in five 10m x 10m quads. Plant-pollinator interactions were sampled monthly using a 2hr timed transect sampling method. Every time the observer encountered an insect interacting with a flower, he or she captured the insect for identification and noted the plant species upon which it was encountered. Vegetation structure and surrounding landscape composition were assessed using LiDAR and aerial imagery via the GatorEye Unmanned Flying Laboratory.

One of the primary objectives of this study was to identify relationships between fire, vegetation structure, and plant-pollinator networks. To that end, we used LiDAR-derived Leaf Area Index (LAI) values to assess the density of four canopy strata beginning at 0.5m, which is the lowest height at which LAI can be reliably calculated from LiDAR: understory (0.5m-1m), lowstory (1m-3m), midstory (3m-6m), and overstory (6m+). We used these data in conjunction with ground-collected percent herbaceous cover estimates to approximate the overall structure of each plot.







## **Overall Study Results: Vegetation Structure**

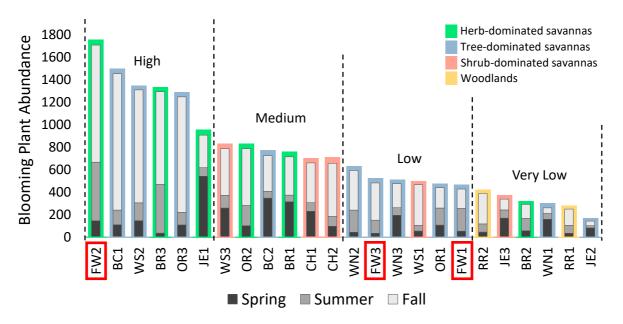
Using multivariate statistical techniques to analyze the relative proportions of ground layer, shrub layer, and tree layer LAI, we identified four significantly different types of fire-maintained sandhill structures: Type A (herb-dominated savannas), Type B (tree-dominated savannas), Type C (shrub-dominated savannas), and Type D (woodlands). The images at left are visualizations of the LiDAR data, showing representative 1-ha plots belonging to each category.

## **Overall Study Results: Flower and Pollinator Abundance**

Across the whole study, we found that flowering plant abundance was strongly correlated with total annual pollinator abundance and total pollinator species richness, and varied greatly across plots and seasons, with total flower abundance ranging from 145 to 1,707 blooming plants per plot.



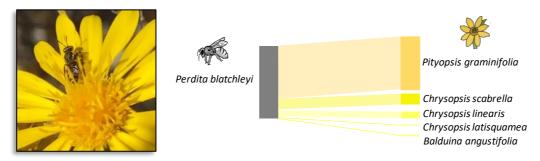



## Flower and Pollinator Abundance cont'd

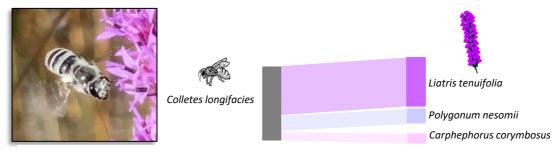
We found that the spring bloom season in longleaf pine sandhills is dominated by shrubs (particularly saw palmetto and blueberries), while the fall bloom season is dominated by herbaceous plants (especially members of the Asteraceae or sunflower family). Most of the herb-dominated plots in the study fell at the moderate to high end of the flower abundance range. Tree-dominated savanna plots had highly variable flower abundance, ranging from the lowest flower abundance to the second-highest, while shrub-dominated and woodland plots were somewhat less variable, ranging from very low to moderate flower abundance. Our habitat models showed that the abundance of individual flower-producing plants was only one predictor of actual flower production; tree-layer LAI had a significant negative influence on flower production, suggesting that even where appropriate understory plants are present, their flower production may be suppressed by higher levels of tree canopy LAI. For a more detailed accounting of data analysis, conclusions, and management recommendations, check our FWRI/Upland Habitat website for publications and reports, which will be uploaded <a href="https://myfwc.com/research/habitat/upland/">https://myfwc.com/research/habitat/upland/</a>.

#### Fort White Results: Stand Structure and Flower Abundance

Fort White had one herb-dominated plot and two tree-dominated plots: <u>Plot FW2</u> is an herb-dominated savanna, and <u>Plot FW1</u> and <u>Plot FW3</u> are tree-dominated savannas. Plot FW2, an herb-dominated savanna, had the highest blooming plant abundance in the whole study, while Plot FW1 and Plot FW3 (both tree-dominated savannas) were in the Low flower abundance quantile. Plot FW2 was particularly notable for its high abundance of *Dalea pinnata*, a legume that is highly attractive to many pollinator species.

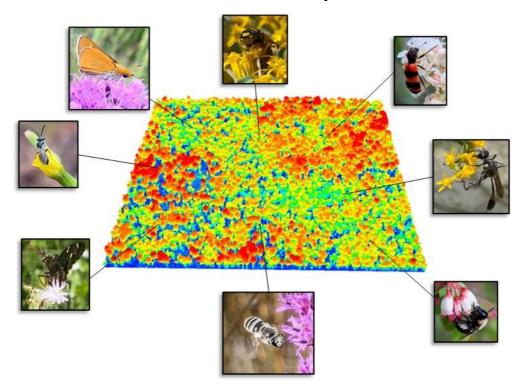






#### Fort White Results: Pollinator Overview

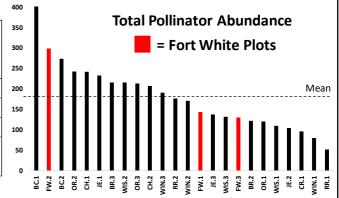
Pollinator abundance and species diversity varied dramatically between plots at Fort White, with herb-dominated plot FW2 generally having much higher abundance and diversity of pollinators than the tree-dominated plots FW1 and FW3. This pattern was most pronounced for Hymenoptera (Bees & Wasps) and Lepidoptera (Butterflies & Moths); Diptera (flies) had relatively high abundance and diversity across all plots, while Coleoptera (beetles) had relatively low abundance and diversity across all plots. Order-specific pollinator results are presented in greater detail on the following pages, followed by plant-pollinator network diagrams for each plot.

We found several pollinator Species of Greatest Conservation Need (SGCN) at Ft. White, including three bees (*Perdita blatchleyi*, *Bombus pensylvanicus*, and *Colletes longifacies*) and two butterflies (*Papilio palimedes* and *Papilio troilus*). We recorded enough observations of *P. blatchleyi* and *C. longifacies* in the overall study to draw conclusions about their flower preferences and make preliminary management recommendations. *P. blatchleyi* is a specialist on the closely-related plant genera *Pityopsis* and *Chrysopsis*, while *C. longifacies* appears to be less of a specialist, as we observed it interacting with the unrelated genera *Liatris* and *Polygonum*. Given the prevalence of interactions for the two SGCN bee species on *P. graminifolia* and *L. tenuifolia*, promoting flowering in these two plant species may be a good conservation target for improving *C. longifacies and P. blatchleyi* habitat. P. graminifolia's flower production and reproductive success are fire-induced and strongly influenced by season of burn, with spring and summer fires stimulating more flowers than winter fires (Brewer and Platt 1994). Both P. graminifolia and L. tenuifolia are sensitive to vegetation structure and become locally extirpated when shrub and tree cover become excessive. Management regimes that emphasize growing season fire and decrease woody dominance can be expected to favor these two SGCN bees.




Flower interactions of *Perdita blatchleyi*, based on 103 observations recorded during the project.

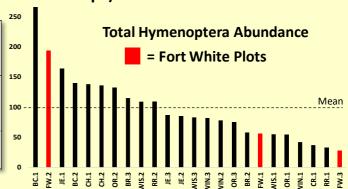



Flower interactions of *Colletes longifacies*, based on 24 observations recorded during the project.

## Fort White Results: Pollinator Abundance and Species Richness



## **Overall Pollinator Abundance and Species Richness**


|                 | Abundance        |         | Sp               | ecies   |     |        |
|-----------------|------------------|---------|------------------|---------|-----|--------|
|                 | # of individuals |         | # of individuals |         | Ric | chness |
|                 | Total Rank       |         | Total            | Rank    |     |        |
| Plot <b>FW1</b> | 144 Med-Low      |         | 46               | Med-Low |     |        |
| Plot <b>FW2</b> | 299 High         |         | 89               | High    |     |        |
| Plot <b>FW3</b> | 130 Med-Low      |         | 45               | Med-Low |     |        |
| Study Average   | 181.6            |         | 181.6            |         |     | 57.6   |
| Study Range     | 5                | 2 - 402 | 2.               | 5 - 90  |     |        |



The above table shows the total pollinator abundance (number of individual insects caught) and total pollinator species richness for the three study plots at Fort White, along with their rank relative to the entire 24-plot study. Plots within one Standard Deviation (SD) above the mean were ranked "Medium-High," and plots within one SD below the mean were ranked "Medium-Low." Plots >1 SD above the mean were ranked "High," and >1 SD below the mean were ranked "Low." Plot FW2 had the highest species richness and second-highest pollinator abundance in the whole study, while plots FW1 and FW3 had lower than average pollinator abundance and species richness. These differences are most likely due to the differences in stand structure between plots at Fort White. In the following sections, the same method is used to assess pollinator abundance and species richness within insect groups (Bees/Wasps, Butterflies/Moths, Beetles, and Flies).

## Hymenoptera (Bees & Wasps)

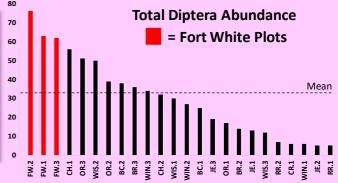
|                 | Abundance        |         | Species |                |  |
|-----------------|------------------|---------|---------|----------------|--|
|                 | # of individuals |         | R       | ichness        |  |
|                 | Total            | Rank    | Total   | Rank           |  |
| Plot <b>FW1</b> | 56 Med-Low       |         | 28      | <b>Med-Low</b> |  |
| Plot <b>FW2</b> | 194 High         |         | 61      | High           |  |
| Plot <b>FW3</b> | 28 <b>Low</b>    |         | 21      | Low            |  |
| Study Average   | 98.1             |         | 33.6    |                |  |
| Study Range     | 28               | 3 - 266 |         | 12 - 61        |  |



Bee & wasp abundance and species richness were very high in plot FW2, and low to medium-low in plots FW1 and FW3. Among the most abundant native Hymenopteran species were *Megachile mendica* (Beggar Leafcutter Bee), *Lasioglossum nymphale* (a sweat bee), *Bombus impatiens* (Eastern Bumble Bee), *Agapostemon splendens* (Splendid Sweat Bee), and *Myzinum maculatum* (a Thynnid wasp). \*Photo credits for non-FWRI photos on last page.












## **Diptera (Flies)**

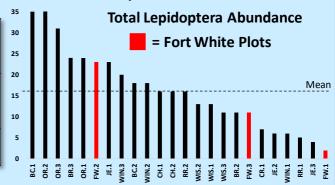
|                 | Abundance<br># of individuals |      |        | pecies<br>chness |
|-----------------|-------------------------------|------|--------|------------------|
|                 | Total Rank                    |      | Total  | Rank             |
| Plot <b>FW1</b> | 63                            | High | 10     | Med-High         |
| Plot FW2        | 76 High                       |      | 10     | Med-High         |
| Plot <b>FW3</b> | 62 High                       |      | 7      | Med-High         |
| Study Average   | 32.1                          |      | 8.0    |                  |
| Study Range     | 5                             | - 79 | 2 - 18 |                  |



Dipteran abundance was very high in all three plots at Ft. White, and Dipteran species richness was medium-high in all plots. The most abundant native Dipteran pollinators at Ft. White were *Poecilognathus sulphureus* (Sulphurous bee fly), *Poecilognathus punctipennis* (A bee fly), *Exprosopa fasciata* (Banded bee fly), *Geron vitripennis* (Glassy-winged Bee Fly), and *Physoconops excisus* (A thick-headed fly). \*Photo credits for non-FWRI photos on last page.












## **Lepidoptera (Butterflies & Moths)**

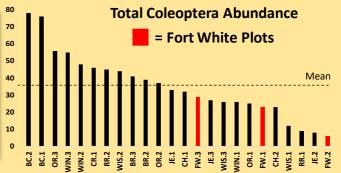
|                 | Abundance<br># of individuals |        | •     | ecies<br>chness |
|-----------------|-------------------------------|--------|-------|-----------------|
|                 | Total                         | Rank   | Total | Rank            |
| Plot <b>FW1</b> | 2 Low                         |        | 2     | Low             |
| Plot <b>FW2</b> | 23 Med-High                   |        | 14    | High            |
| Plot <b>FW3</b> | 11 Med-Low                    |        | 8     | Med-Low         |
| Study Average   | 16.2                          |        | 8.1   |                 |
| Study Range     |                               | 2 - 35 | 2     | 2 - 14          |



Lepidopteran species richness was very high in plot FW2, and abundance was medium-high in FW2. Both richness and abundance were medium-low in plot FW3, and very low in plot FW1. Five of the most abundant species were *Erynnis horatius* (Horace's Duskywing), *Hemiargus ceraunus* (Ceraunus Blue), *Papilio Palamedes* (Palamedes swallowtail), *Junonia coenia* (Common Buckeye), and *Urbanus proteus* (Long-Tailed Skipper). \*Photo credits for non-FWRI photos on last page.












## **Coleoptera (Beetles)**

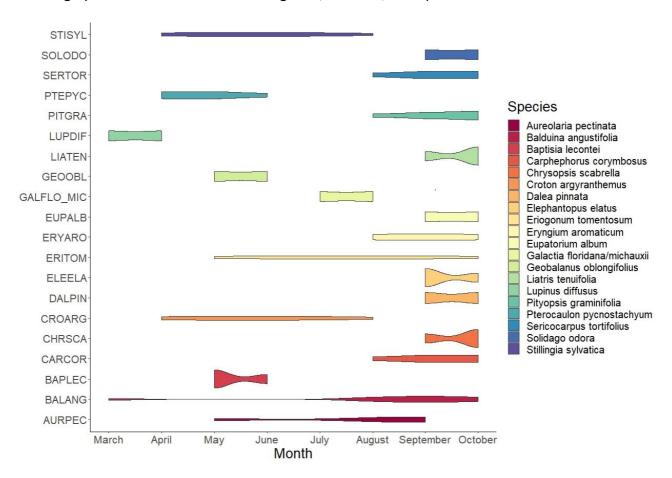
|                 | Abu        | ndance    | Species  |          |  |
|-----------------|------------|-----------|----------|----------|--|
|                 | # of In    | dividuals | Richness |          |  |
|                 | Total      | Rank      | Total    | Rank     |  |
| Plot <b>FW1</b> | 23         | Med-Low   | 6        | Med-Low  |  |
| Plot <b>FW2</b> | 6          | Low       | 4        | Low      |  |
| Plot <b>FW3</b> | 29 Med-Lov |           | 9        | Med-High |  |
| Study Average   | 35.2       |           | 8.0      |          |  |
| Study Range     | 6 - 78     |           | 4 - 14   |          |  |



Beetle abundance was low to medium-low in all plots, and beetle species richness ranged from low to medium-high. Five of the most abundant pollinating beetles at Ft. White were *Mordella atrata* (Tumbling Flower Beetle), *Acmaeodera pulchella* (bald-cypress sapwood beetle), *Trigonopeltastes delta* (Delta Flower Beetle), *Chauliognathus marginatus* (Margined Leatherwing), and *Epicauta sp.* (Blister Beetles). \*Photo credits for non-FWRI photos on last page.

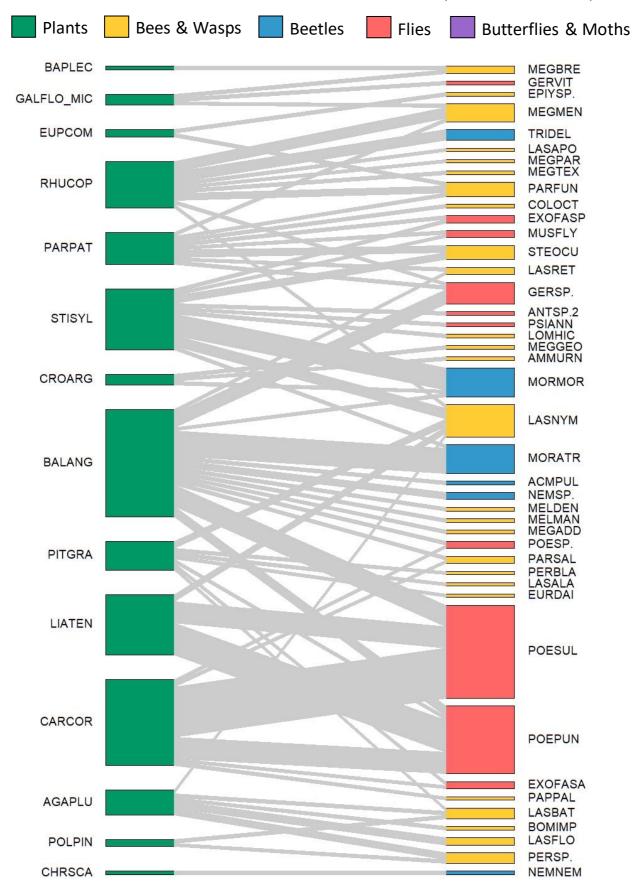




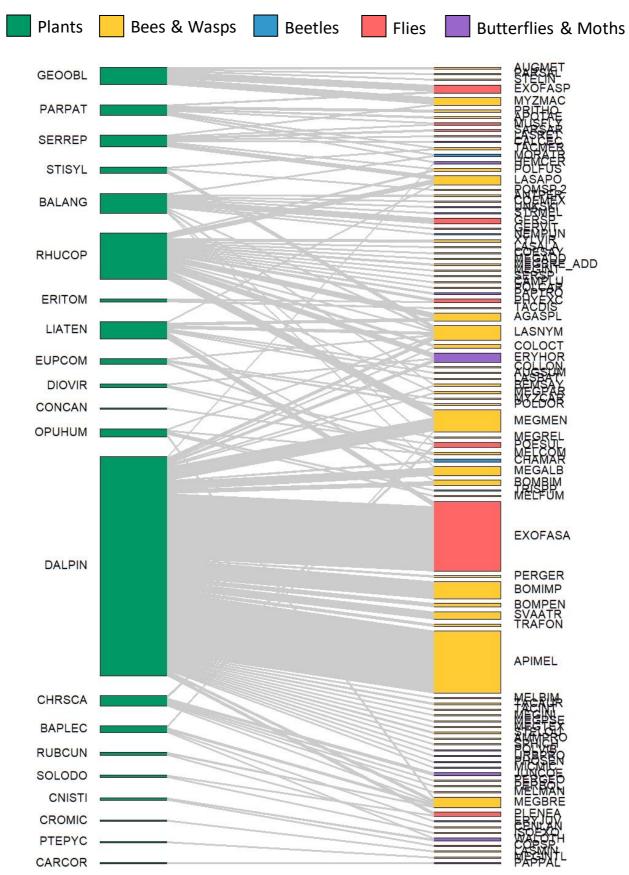




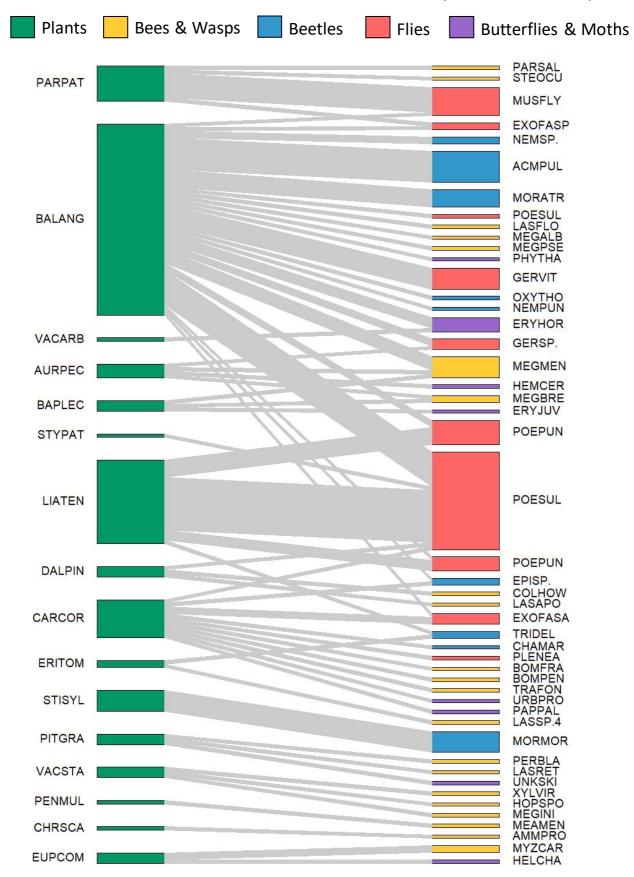




## **Key flowering plant species**

We identified 20 of the most important herbaceous flowering species that were present on multiple sites and had high pollinator interaction rates throughout the study. Many of these species, shown in the graphic below with their blooming time/duration, were prevalent in the Fort White sandhills.







FW1 Plant-Pollinator Network \*Plant and insect code key included at end of report




FW2 Plant-Pollinator Network \*Plant and insect code key included at end of report



FW3 Plant-Pollinator Network \*Plant and insect code key included at end of report



## Most frequently observed native pollinator genera at Ft. White



## Insect Code Key for network diagrams, with plot occurrence data

|         |                             | Νι   | ımber Cau |      |                                |
|---------|-----------------------------|------|-----------|------|--------------------------------|
| Code    | Species                     | FW-1 | FW-2      | FW-3 | Insect Type                    |
| ACMPUL  | Acmaeodera pulchella        | 1    | 0         | 9    | Beetles                        |
| AGASPL  | Agapostemon splendens       | 0    | 6         | 0    | Bees & Wasps                   |
| AMMPRO  | Ammophila procera           | 0    | 1         | 1    | Bees & Wasps                   |
| AMMURN  | Ammophila urnaria           | 1    | 0         | 0    | Bees & Wasps                   |
| ANTPER  | Anthidiellum perplexum      | 0    | 1         | 0    | Bees & Wasps                   |
| ANTSP.2 | Anthracinae sp. 2           | 1    | 0         | 0    | Flies                          |
| APIMEL  | Apis mellifera              | 0    | 47        | 0    | Bees & Wasps                   |
| APOTAE  | Aporinellus taeniatus       | 0    | 1         | 0    | Bees & Wasps                   |
| AUGMET  | Augochloropsis metallica    | 0    | 1         | 0    | Bees & Wasps                   |
| AUGSUM  | Augochloropsis sumptuosa    | 0    | 1         | 0    | Bees & Wasps                   |
| BEMSAY  | Bembix sayi                 | 0    | 2         | 0    | Bees & Wasps                   |
| BOMBIM  | Bombus bimaculatus          | 0    | 4         | 0    | Bees & Wasps                   |
| BOMFRA  | Bombus fraternus            | 0    | 0         | 1    | Bees & Wasps                   |
| BOMIMP  | Bombus impatiens            | 1    | 13        | 0    | Bees & Wasps                   |
| BOMPEN  | Bombus pensylvanicus        | 0    | 3         | 1    | Bees & Wasps                   |
| CALCEC  | Calycopis cecrops           | 0    | 1         | 0    | Butterflies & Moths            |
| CAMPLU  | Campsomeris plumipes fossul | 0    | 1         | 0    | Bees & Wasps                   |
| CENLAN  | Centris lanosa              | 0    | 1         | 0    | Bees & Wasps                   |
| CHAMAR  | Chauliognathus marginatus   | 0    | 2         | 1    | Beetles                        |
| COEMEX  | Coelioxys mexicanus         | 0    | 1         | 0    | Bees & Wasps                   |
| COESAY  | Coelioxys sayi              | 0    | 1         | 0    | Bees & Wasps                   |
| COLHOW  | Colletes howardi            | 0    | 0         | 1    | Bees & Wasps                   |
| COLLON  | Colletes longifacies        | 0    | 1         | 0    | Bees & Wasps                   |
| COLOCT  | Colpa octomaculata          | 1    | 3         | 0    | Bees & Wasps                   |
| COPSP.  | Copestylum sp.              | 0    | 1         | 0    | Flies                          |
| EPISP.  | Epicauta sp.                | 0    | 0         | 2    | Beetles                        |
| EPIYSP. | Episyron sp.                | 1    | 0         | 0    | Bees & Wasps                   |
| ERYHOR  | Erynnis horatius            | 0    | 7         | 4    | <b>Butterflies &amp; Moths</b> |
| ERYJUV  | Erynnis juvenalis           | 0    | 1         | 1    | <b>Butterflies &amp; Moths</b> |
| EURDAI  | Eurema daira                | 1    | 0         | 0    | <b>Butterflies &amp; Moths</b> |
| EXOFASA | Exoprosopa fasciata         | 2    | 53        | 3    | Flies                          |
| EXOFASP | Exoprosopa fascipennis      | 2    | 6         | 2    | Flies                          |
| GERSP.  | Geron sp.                   | 6    | 4         | 3    | Flies                          |
| GERVIT  | Geron vitripennis           | 1    | 1         | 6    | Flies                          |
| HELCHA  | Heliconius charithonia      | 0    | 0         | 1    | Butterflies & Moths            |
| HEMCER  | Hemiargus ceraunus          | 0    | 2         | 1    | Butterflies & Moths            |
| HOPSPO  | Hoplitis spoliata           | 0    | 0         | 1    | Bees & Wasps                   |
| ISOEXO  | Isodontia exornata          | 0    | 1         | 0    | Bees & Wasps                   |
| JUNCOE  | Junonia coenia              | 0    | 2         | 0    | Butterflies & Moths            |
| LASALA  | Lasioglossum alachuense     | 1    | 1         | 0    | Bees & Wasps                   |

| LASAPO    | Lasioglossum apopkense            | 1 | 7  | 1 | Bees & Wasps        |
|-----------|-----------------------------------|---|----|---|---------------------|
| LASBAT    | Lasioglossum batya                | 3 | 1  | 0 | Bees & Wasps        |
| LASFLO    | Lasioglossum floridanum           | 2 | 0  | 1 | Bees & Wasps        |
| LASMIN    | Lasioglossum miniatulum           | 0 | 1  | 0 | Bees & Wasps        |
| LASNYM    | Lasioglossum nymphale             | 9 | 11 | 0 | Bees & Wasps        |
| LASRET    | Lasioglossum reticulatum          | 2 | 1  | 1 | Bees & Wasps        |
| LASSP.4   | Lasioglossum Sp. 4                | 0 | 0  | 1 | Bees & Wasps        |
| LOMHIC    | Lomachaeta hicksi                 | 1 | 0  | 0 | Bees & Wasps        |
| MEGADD    | Megachile addenda                 | 1 | 1  | 0 | Bees & Wasps        |
| MEGALB    | Megachile albitarsis              | 0 | 7  | 1 | Bees & Wasps        |
| MEGBRE    | Megachile brevis                  | 2 | 8  | 2 | Bees & Wasps        |
| MEGBRE_AD | D <i>Megachile brevis/addenda</i> | 0 | 1  | 0 | Bees & Wasps        |
| MEGGEO    | Megachile georgica                | 1 | 0  | 0 | Bees & Wasps        |
| MEGINI    | Megachile inimica                 | 0 | 1  | 1 | Bees & Wasps        |
| MEGINT    | Megachile integra                 | 0 | 1  | 0 | Bees & Wasps        |
| MEGINTL   | Megachile integrella              | 0 | 1  | 0 | Bees & Wasps        |
| MEGMEN    | Megachile mendica                 | 5 | 17 | 6 | Bees & Wasps        |
| MEGMEN    | Megachile mendica                 | 0 | 0  | 1 | Bees & Wasps        |
| MEGPAR    | Megachile parallela               | 1 | 2  | 0 | Bees & Wasps        |
| MEGPSE    | Megachile pseudobrevis            | 0 | 1  | 1 | Bees & Wasps        |
| MEGREL    | Megachile relativa                | 0 | 1  | 0 | Bees & Wasps        |
| MEGTEX    | Megachile texana                  | 1 | 1  | 0 | Bees & Wasps        |
| MELBIM    | Melissodes bimaculata             | 0 | 1  | 0 | Bees & Wasps        |
| MELCOM    | Melissodes communis               | 0 | 2  | 0 | Bees & Wasps        |
| MELDEN    | Melissodes denticulatus           | 1 | 0  | 0 | Bees & Wasps        |
| MELFUM    | Melissodes fumosus                | 0 | 1  | 0 | Bees & Wasps        |
| MELMAN    | Melissodes manipularis            | 1 | 1  | 0 | Bees & Wasps        |
| MICMIC    | microlep                          | 0 | 1  | 0 | Butterflies & Moths |
| MORATR    | Mordella atrata                   | 8 | 2  | 5 | Beetles             |
| MORMOR    | Mordellidae                       | 8 | 0  | 6 | Beetles             |
| MUSFLY    | muscoid fly                       | 2 | 2  | 8 | Flies               |
| MYZCAR    | Myzinum carolinianum              | 0 | 1  | 2 | Bees & Wasps        |
| MYZMAC    | Myzinum maculatum                 | 0 | 6  | 0 | Bees & Wasps        |
| NEMNEM    | Nemognatha nemorensis             | 1 | 0  | 0 | Beetles             |
| NEMPUN    | Nemognatha punctulata             | 0 | 1  | 1 | Beetles             |
| NEMSP.    | Nemognatha sp.                    | 2 | 0  | 2 | Beetles             |
| OXYTHO    | Oxycopois thoracica               | 0 | 0  | 1 | Beetles             |
| PAPPAL    | Papilio palamedes                 | 1 | 1  | 1 | Butterflies & Moths |
| PAPTRO    | Papilio troilus                   | 0 | 1  | 0 | Butterflies & Moths |
| PARFUN    | Paracyphononyx funereus           | 4 | 0  | 0 | Bees & Wasps        |
| PARSAL    | Parancistrocerus salcularis       | 2 | 1  | 1 | Bees & Wasps        |
| PERBLA    | Perdita blatchleyi                | 1 | 0  | 1 | Bees & Wasps        |
|           | -,                                |   |    |   |                     |

| PERBOL     | Perdita boltoniae            | 0  | 1 | 0  | Bees & Wasps                   |
|------------|------------------------------|----|---|----|--------------------------------|
| PERGEO     | Perdita georgica             | 0  | 1 | 0  | Bees & Wasps                   |
| PERGER     | Perdita gerardiae            | 2  | 1 | 0  | Bees & Wasps                   |
| PERGER_BLA | Perdita gerardiae/blatcheyi  | 1  | 0 | 0  | Bees & Wasps                   |
| PERGERH    | Perdita gerhardi             | 2  | 0 | 0  | Bees & Wasps                   |
| PEROCT     | Perdita octomaculata         | 1  | 0 | 0  | Bees & Wasps                   |
| PERSP.     | Perdita sp.                  | 3  | 0 | 0  | Bees & Wasps                   |
| PHOSEN     | Phoebis sennae               | 0  | 1 | 0  | <b>Butterflies &amp; Moths</b> |
| PHYEXC     | Physoconops excisus          | 0  | 3 | 0  | Flies                          |
| PHYTHA     | Phyciodes tharos             | 0  | 0 | 1  | <b>Butterflies &amp; Moths</b> |
| PLENEA     | Plecia nearctica             | 0  | 3 | 1  | Flies                          |
| POEPUN     | Poeciliognathus punctipennis | 20 | 0 | 11 | Flies                          |
| POESP.     | Poecilognathus sp.           | 2  | 0 | 0  | Flies                          |
| POESUL     | Poeciliognathus sulphureus   | 26 | 4 | 29 | Flies                          |
| POLCAR     | Polistes carolina            | 0  | 1 | 0  | Bees & Wasps                   |
| POLDOR     | Polistes dorsalis            | 0  | 1 | 0  | Bees & Wasps                   |
| POLFUS     | Polistes fuscatus            | 0  | 2 | 0  | Bees & Wasps                   |
| POLVIB     | Polites vibex                | 0  | 1 | 0  | <b>Butterflies &amp; Moths</b> |
| POMSP.2    | Pompilidae sp. 2             | 0  | 1 | 0  | Bees & Wasps                   |
| PRITHO     | Prionyx thomae               | 0  | 2 | 0  | Bees & Wasps                   |
| PSIANN     | Psilonyx annulatus           | 1  | 0 | 0  | Flies                          |
| SARSAR     | Sarcophagidae                | 0  | 1 | 0  | Flies                          |
| SERSP.     | Sericopompilus sp.           | 0  | 1 | 0  | Bees & Wasps                   |
| SPHICH     | Sphex ichneumoneus           | 0  | 1 | 0  | Bees & Wasps                   |
| STELIN     | Stenodynerus lineatifrons    | 0  | 1 | 0  | Bees & Wasps                   |
| STELOU     | Stelis louisae               | 0  | 1 | 0  | Bees & Wasps                   |
| STEOCU     | Stenodynerus oculeus         | 4  | 0 | 1  | Bees & Wasps                   |
| STRMEL     | Strymon melinus              | 0  | 1 | 0  | Butterflies & Moths            |
| SVAATR     | Svastra atripes              | 0  | 6 | 0  | Bees & Wasps                   |
| TACAUR     | Tachytes auricomans          | 0  | 1 | 0  | Bees & Wasps                   |
| TACDIS     | Tachytes distinctus          | 0  | 1 | 0  | Bees & Wasps                   |
| TACINT     | Tachytes intermedius         | 0  | 1 | 0  | Bees & Wasps                   |
| TACMER     | Tachytes mergus              | 0  | 2 | 0  | Bees & Wasps                   |
| TRAFON     | Trachusa fontemvitae         | 0  | 2 | 1  | Bees & Wasps                   |
| TRIDEL     | Trigonopeltastes delta       | 3  | 0 | 2  | Beetles                        |
| TRISPP     | Trichiotinus spp.            | 0  | 1 | 0  | Beetles                        |
| UNKSKI     | unknown skipper              | 0  | 1 | 1  | Butterflies & Moths            |
| URBPRO     | Urbanus proteus              | 0  | 1 | 1  | Butterflies & Moths            |
| WALOTH     | Wallengrenia otho            | 0  | 2 | 0  | Butterflies & Moths            |
| XYLVIR     | Xylocopa virginica           | 0  | 2 | 1  | Bees & Wasps                   |
|            | , ,                          |    |   |    |                                |

Plant Code Key for network diagrams, with plot occurrence data

|            |                                | Re      |     |     |            |
|------------|--------------------------------|---------|-----|-----|------------|
|            |                                | % of qu |     |     |            |
| Code       | Species                        | FW1     | FW2 | FW3 | Plant Type |
| AGAPLU     | Agalinis plukenettii           | 12      | 0   | 2   | Forb       |
| AGEJUC     | Ageratina jucunda              | 5       | 4   | 0   | Forb       |
| ASIINC     | Asimina incana                 | 2       | 17  | 12  | Shrub      |
| BALANG     | Balduina angustifolia          | 13      | 13  | 23  | Forb       |
| BAPLEC     | Baptisia lecontei              | 13      | 36  | 11  | Forb       |
| CARCOR     | Carphephorus corymbosus        | 23      | 9   | 32  | Forb       |
| CHRSCA     | Chrysopsis scabrella           | 5       | 18  | 15  | Forb       |
| CNISTI     | Cnidoscolus stimulosus         | 5       | 2   | 7   | Forb       |
| COMERE     | Commelina erecta               | 0       | 1   | 0   | Forb       |
| CROARG     | Croton argyranthemus           | 7       | 29  | 4   | Forb       |
| CROCOR     | Crocantheumum corymbosum       | 0       | 1   | 0   | Forb       |
| CROMIC     | Croton michauxii               | 30      | 47  | 13  | Forb       |
| DALPIN     | Dalea pinnata                  | 6       | 89  | 3   | Forb       |
| DIOSVI     | Diospyros virginiana           | 16      | 13  | 22  | Shrub      |
| ERITOM     | Eriogonum tomentosum           | 4       | 3   | 7   | Forb       |
| EUPCOM     | Eupatorium compositifolium     | 19      | 43  | 28  | Forb       |
| GALFLO_MIC | Galactia floridana/michauxii   | 92      | 69  | 40  | Forb       |
| GEOOBL     | Geobalanus oblongifolius       | 1       | 33  | 1   | Forb       |
| HYPSUF     | Hypericum suffruticosum        | 0       | 0   | 1   | Shrub      |
| LESHIR     | Lespedeza hirta                | 0       | 1   | 0   | Forb       |
| LIATEN     | Liatris tenuifolia             | 20      | 24  | 21  | Forb       |
| OPUHUM     | Opuntia humifusa               | 2       | 7   | 1   | Forb       |
| PALINT     | Palafoxia integrifolia         | 1       | 28  | 47  | Forb       |
| PARPAT     | Paronychia patula              | 17      | 13  | 2   | Forb       |
| PEDCAN     | Pediomelum canescens           | 0       | 0   | 1   | Forb       |
| PIRCIS     | Piriqueta cistoides            | 0       | 0   | 1   | Forb       |
| PITGRA     | Pityopsis graminifolia         | 24      | 0   | 6   | Forb       |
| POLPIN     | Polygonum pinicola             | 6       | 6   | 0   | Forb       |
| RHUCOP     | Rhus copallinum                | 67      | 84  | 21  | Shrub      |
| RUBCUN     | Rubus cuneifolius              | 12      | 51  | 0   | Shrub      |
| SERREP     | Serenoa repens                 | 10      | 26  | 15  | Shrub      |
| SMIAUR     | Smilax auriculata              | 3       | 5   | 9   | Shrub      |
| SOLODO     | Solidago odora                 | 2       | 1   | 0   | Forb       |
| STISYL     | Stillingia sylvatica           | 47      | 25  | 12  | Forb       |
| STYBIF     | Stylosanthes biflora           | 1       | 1   | 6   | Forb       |
| STYPAT     | Stylisma patens                | 23      | 2   | 11  | Forb       |
| TEPCHR_SPI | Tephrosia chrysophylla/spicato | 79      | 76  | 58  | Forb       |
| VACARB     | Vaccinium arboreum             | 36      | 16  | 34  | Shrub      |
| VACMYR     | Vaccinium myrsinites           | 0       | 4   | 0   | Shrub      |
| VACSTA     | Vaccinium stamineum            | 18      | 7   | 17  | Shrub      |

#### References

Bascompte, J., & Jordano, P. (2007). Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst., 38, 567-593.

Brewer, J.S. and Platt, W.J., 1994. Effects of fire season and herbivory on reproductive success in a clonal forb, Pityopsis graminifolia. Journal of Ecology, pp.665-675.

Noss, R.F., Platt, W.J., Sorrie, B.A., Weakley, A.S., Means, D.B., Costanza, J. and Peet, R.K., 2015. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions, 21(2), pp.236-244.

Spiesman BJ and Inouye BD. 2013. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94(12): 2688-2696.

#### **Additional Resources**

For more information on the natural history and identification of the insects we found at Fort White, these are good places to start:

BugGuide.net: <a href="https://bugguide.net/node/view/15740">https://bugguide.net/node/view/15740</a>

Discover Life: https://www.discoverlife.org/

For more information on the natural history and identification of the pollinator plants at Fort White, start with these resources:

Flora of North America: http://floranorthamerica.org/Main\_Page

Atlas of Florida Vascular Plants: https://florida.plantatlas.usf.edu/

For a more detailed accounting of data analysis, conclusions, and management recommendations, check our FWRI/Upland Habitat website for publications and reports, which will be uploaded as they are finalized: <a href="https://myfwc.com/research/habitat/upland/">https://myfwc.com/research/habitat/upland/</a>.

Feel free to contact FWRI's Upland Habitat Research & Monitoring team with plant and pollinator questions any time, if we don't have the answer we can find out or point you in the right direction:

Johanna Freeman, FWRI Upland Habitat team leader johanna.freeman@myfwc.com (352)514-8305

## Photo credits for all photos not taken by FWRI staff:

Agapostemon: Ali and Brice/NatureServe; Poecilognathus punctipennus: Bob Peterson/BugGuide; Physonocops: Melissa McMasters, DiscoverLife; Erynnis horiatus: Mary Langlinais, BugGuide; Junonia coenia: James Campbell, Maryland biodiversity; Acmaeodera pulchella: Philip Harpootlian, BugGuide; Typocerus (Judy Gallagher)

#### **Acknowledgments**

This work was made possible by grants from the U.S. Fish & Wildlife Service/State Wildlife Grants Program and the Fish & Wildlife Foundation of Florida. Many thanks to the experts at the Florida State Collection of Arthropods for their support and assistance with insect identification: Paul Skelley (Director), Gary Steck (Diptera), Elijah Talamas (Hymenoptera), and Kyle Schnepp (Coleoptera). Thanks also to Alexandra Morphew of the USDA/ARS for assistance with *Lasioglossum* identification.